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Abstract

We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the
transport of thermally emitted radiation. The weakened coupling between the radi-
ation and material energy of the IMC method causes defects in handling problems
with strong transients. We introduce an approach to asymptotic analysis for the
transport equation that emphasizes the fact that the radiation and material tem-
peratures are always different in time dependent problems, and we use it to show
that IMC does not produce the correct diffusion limit. As this is a defect of IMC in
the continuous equations, no improvement to its discretization can remedy it.
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1 Introduction

There are four practical algorithms for the transport of thermally emitted
radiation in absorptive media, broadly described in [1], [2], [3] and [4]. The
oldest method is flux-limited diffusion [4]. It works well in optically thick
media but it loses accuracy in optically thin media. In practical problems,
where space is divided into zones and time is divided into time steps, it needs
the solution of a number of equations equal to the number of zones in the
problem at each time step. This is an additional limitation of the method,
but the local coupling between the zones can be exploited to reduce the cost
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of the solution. The second method is Implicit Monte Carlo, IMC [5]. It was
introduced at a time when solving a large number of equations (inverting a
large matrix) was prohibitively time consuming. It can be solved explicitly
and it is “almost” stable. It is still very expensive in optically thick media due
to the computer time consumed by effective scattering. We show in this paper
that it is inaccurate in time-dependent problems if the Fleck factor, f , is less
than unity, even without accounting for the errors introduced by discretization
in space and time. The third method is based on tracking light rays along 2n+1
discrete ordinates, called Sn. It requires the solution of a much larger number
of equations than diffusion: specifically they are the number of zones times the
number of frequency groups times (2n + 1). The number of equations can be
reduced to be the same as in diffusion by using Chang’s photon-free method
[6].

The fourth method is Symbolic Implicit Monte Carlo [7]. The unknowns in it
are the material temperatures in each zone at the end of the time step, so their
number is equal to that for diffusion, although more densely populated matri-
ces appear when a problem has optically thin regions. As it is fully implicit, 1

it is numerically stable. It is accurate in the continuum limit. When the differ-
ence formulation is used, the Monte Carlo noise gets small in thick media [8]. It
has been shown both in theory and in practical examples that accurate results
are obtained in optically thick media by using a piecewise linear discretization
[9], [10]. Theory (and practice) teach us that in multi-dimensional problems,
Monte Carlo methods may converge better than deterministic methods, so Sn
is not necessarily advantageous in such media.

This paper discusses the limits of validity of the Implicit Monte Carlo method
(IMC). We start in Section 2 by outlining our notation and the equations for
radiation transport in stationary media in local thermodynamic equilibrium.
In Section 3 we outline IMC in some detail. In that section we restrict ourselves
to a medium with grey (frequency-independent) absorption and no physical
scattering. This makes the equations of IMC simpler and more transparent.
(Up to this point the paper presents nothing new.) We stress that the only
way to measure the validity of any discretization in space and time is how
close its results are to the solution of the continuous equations. So, if we can
find limitations and flaws in the continuous equations, no discretization can
correct them. We next discuss some “exercises”: thermal equilibrium, uniform
flux - in space and time - in thick media, and the rate of equilibration between
the radiation temperature and the material temperature in a uniform medium.

In Section 4 we start the more formal part of the paper. In that section we treat

1 It is fully implicit in the treatment of the unknown material temperature as it
affects the strength of thermal emission during a time step, but does not treat the
frequency spectrum of the emitted radiation implicitly.
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a medium with grey absorption and isotropic scattering, in slab geometry. First
we investigate the limit of vanishing Fleck factor: where absorption has been
completely converted to an isotropic “effective scattering”. We derive in this
limit the “Eddington” diffusion equation. We then do an asymptotic expansion
of the equations for grey absorption and isotropic scattering in optically thick
media. We show that the diffusion limit of IMC is not the diffusion equation
that appears in the literature. We close by solving the radiation transport
equations by successive approximations and derive the correct IMC equations
that are “not quite” the diffusion equation.

2 Radiation transport equations in stationary media in local ther-
modynamic equilibrium

In order to introduce our notation we write down the radiation transport
equations in stationary media in local thermodynamic equilibrium (LTE) [1],
[2], [3], [8]. They describe the propagation of the radiation field in terms of the
specific intensity, I(x, t; ν,Ω), where x, t are the space and time variables, ν is
the radiation frequency and Ω is a unit vector in the direction of propagation.

1

c

∂I(x, t; ν,Ω)

∂t
+ Ω·∇I(x, t; ν,Ω) =

σ′a(ν, T (x, t))[B(ν, T (x, t))− I(x, t; ν,Ω)] +Q(I) (1)

B(ν, T ) is the thermal (Planck) distribution at the material temperature,
T (x, t), and c is the speed of light. The absorption coefficient, σ′a, and the
scattering term, Q(I), will be defined below. The specific intensity is related
to the photon number distribution function f(x, t; ν,Ω) by

I(x, t; ν,Ω) = chνf(x, t; ν,Ω) , (2)

where hν is the photon energy.

In Eq. (1), all the variables, I, σ′a, B are functions of the independent variables,
x, t; ν,Ω and/or T (x, t). In the following, some of the independent variables
will be suppressed.

The black body function and the absorption cross section, corrected for stim-
ulated emission, are

B(ν, T ) =
2hν3

c2

(
ehν/kT − 1

)−1
(3)
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and

σ′a(ν, T ) = σa(ν, T )
(
1− e−hν/kT

)
, (4)

with σa being the “ordinary” absorption coefficient, per unit distance.

The scattering terms are denoted by

Q(I) =

∞∫
0

dν ′
∫
4π

dΩ′
ν

ν ′
σs(ν

′ → ν,Ω·Ω′)I(ν ′,Ω′)

[
1 +

c2I(ν,Ω)

2hν3

]

−
∞∫
0

dν ′
∫
4π

dΩ′σs(ν → ν ′,Ω·Ω′)I(ν,Ω)

[
1 +

c2I(ν ′,Ω′)

2hν ′3

]
, (5)

where the x, t;T dependence of σs has been suppressed. There are reciprocity
relations among the partial scattering cross sections in Eq. (5). They follow
from time reversal invariance of quantum electrodynamics.

The zeroth moment of the intensity gives the radiation energy density

Urad =
1

c

∞∫
0

dν
∫
4π

dΩ I , (6)

and its first moment is the radiation flux vector

Frad =

∞∫
0

dν
∫
4π

dΩ Ω I . (7)

Interaction of radiation with matter is expressed by the energy conservation
law

∂Umat
∂t

=

∞∫
0

dν
∫
4π

dΩσ′a[I −B(ν, T )]−
∞∫
0

dν
∫
4π

dΩQ(I) +G , (8)

where Umat is the energy per unit volume of the material and G is a volume
source of energy that heats the material.

In the absence of hydrodynamic work terms or thermal conductivity, the total
energy of the radiation field and the material is conserved:

∂(Umat + Urad)

∂t
+∇·Frad = G . (9)
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In the approximation of stationary media, momentum is not conserved. In the
general equations of radiation hydrodynamics, it is.

3 Fleck’s approximation: Implicit Monte Carlo

The introduction of Fleck’s approximation [5], usually called Implicit Monte
Carlo (IMC), was an important advance in radiation transport calculations.
In this approximation, a strongly emitting and absorbing medium is replaced
by a predominantly scattering one. Here we review some details of the method
and describe some of the approximations involved.

In their original paper [5], Fleck and Cummings start from Eqs. (1) and (8),
without the Q(I) term that represents physical scattering. (In their paper
they are Eqs. (3.1a) and (3.1b).) After a series of approximations they arrive
at their Eqs. (3.5) and (3.9). Those equations can be written in our notation
as

1

c

∂I(ν)

∂t
+ Ω·∇I(ν) = f

[
σ′a(ν)[B(ν)− I(ν)]

]

+(1− f)σ′a(ν)
[(
b(ν)

σp

∞∫
0

dν ′
∫
4π

dΩ′σ′a(ν
′)I(ν ′)

)
− I(ν) +G

]
(10)

and

∂Umat
∂t

= f
[ ∞∫
0

dν
∫
4π

dΩσ′a[I(ν)−B(ν)]
]

+ fG . (11)

Although these are differential equations, they were derived using time dis-
cretization with a time step, ∆t. The central idea of IMC is to do a linear
extrapolation over a time step ∆t; then solve for the new value of the material
energy by changing otherwise troublesome time integrals of I and G to ∆t
times their instantaneous values.

The most important new quantity introduced is the “Fleck factor”

f =
1

1 + αβmatc∆tσp
, (12)

where α is a number between 0 and 1 that determines the “implicitness” of
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the approximation, and

βmat = 4aT 3
mat/ρCV . (13)

βmat is the ratio of the specific heat of a black body radiation field (at the
material temperature) to that of the material. The frequency distribution of
the radiation, b(ν), is defined as

b(ν) =
B(ν)

4π
∫∞
0 dνB(ν)

, (14)

and the Planck mean opacity is defined as

σp =

∞∫
0

dνσ′a(ν)b(ν) . (15)

We note that when f � 1, a large fraction of the volume heating source G is
transferred from heating the medium to directly heating the radiation field.

For maximum stability, α = 1 is usually chosen. It is clear that for large time
steps the Fleck factor becomes small, f � 1, so the coupling between matter
and radiation is weakened.

There are several well-known flaws in the Fleck approximation. First, as dis-
cussed above, the coupling between the radiation and the matter is lowered
by the factor f . Therefore, transients are stretched out unphysically. Second,
boundary layers are thickened unphysically. Instead of being of width ≈ 1/σ′a
they are wider by a factor 1/

√
f . Third, when σ′a is frequency dependent,

f depends on the Planck average opacity, σp (instead of the Rosseland mean
opacity σr). That exaggerates the effective opacity and makes f unrealistically
small. Nevertheless, the Fleck approximation strictly conserves energy.

3.1 Grey absorptive medium

Let us start with a grey medium, as Fleck and Cummings do in their original
paper [5]. We use the same notation as Densmore and Larsen [11], [13].

In order to make our discussion clearer, we repeat: we treat an absorbing
medium, without motion, without scattering, in LTE, and with an opacity
that is independent of frequency and temperature. The radiation intensity is
denoted by I(Ω) =

∫∞
0 dνI(Ω, ν), and we denote by B the integral of the black
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body function at the material temperature, Tmat, as

B = (c/4π)aT 4
mat =

∞∫
0

dνB(ν) .

In this notation the original (correct) grey equations of transport, parallel to
our Eqs. (1) and (8), without scattering and without external sources, are

1

c

∂I(Ω)

∂t
+ Ω·∇I(Ω) + σI(Ω) = σB , (16)

and

∂Umat
∂t

= σ
[ ∫
4π

dΩ [I(Ω)−B]
]
. (17)

In the rest of the paper we write σ instead of σ′a in order to conform to
customary usage.

The parallel (approximate) equations in Fleck’s IMC are

1

c

∂I(Ω)

∂t
+ Ω·∇I(Ω) + σI(Ω) =

fσB+ (1− f)σ
[

1

4π

∫
4π

dΩI(Ω)
]
, (18)

and

∂Umat
∂t

= fσ
[ ∫
4π

dΩ [I(Ω)−B]
]
. (19)

Next we use a simple algebraic transformation on Eqs. (18) and (19): we add
and subtract (1 − f)σB on the right-hand side of the former, while we add
and subtact (1 − f)σ

∫
4πdΩ(I − B) on the right hand side of the latter. The

result is

1

c

∂I(Ω)

∂t
+ Ω·∇I(Ω) =σ(B(Ω)− I(Ω))

+ (1− f)σ
1

4π

∫
4π

dΩ(I(Ω)−B) , (20)
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∂Umat
∂t

= σ
∫
4π

dΩ (I(Ω)−B)

− (1− f)σ
∫
4π

dΩ(I(Ω)−B(Ω) . (21)

There is a clear conclusion from this calculation: The first terms on the right
hand side of each equation (20) and (21) are the correct transport equations.
The Fleck approximation adds the second term. In fact, the angular integral
of the term added to (20) is subtracted from (21), showing that the approx-
imation conserves energy. It also follows that if the additonal terms do not
change the results, IMC gives the correct answer. If the added terms do make
a difference, IMC gives the wrong answer. This conclusion is independent of
the mode of discretization in space and time. By inspection, if f = 1 or I = B,
IMC reduces to the correct radiation tramsport equations.

In optically thin media, it is anybody’s guess whether the added terms make
a difference. A more important question is what happens in thick media. A
simple intuitive answer to this question can be obtained by considering Eq.
(19). The heating of the medium is decreased by the Fleck factor. Therefore,
whatever happens to the propagation equation, (18), the result cannot be
correct.

As an example, it has been observed in computer calculations that if there is
a boundary between optically thin and optically thick absorbing media, and
the thin medium is heated externally, radiation penetrates too deeply into the
thick medium.

For later use we write these equations in the difference formulation. We define
the difference intensity, D(Ω) = I(Ω)−B, as in [8].

The transport equations, Eqs. (16) and (17) become

1

c

∂D(Ω)

∂t
+ Ω·∇D(Ω) = σD(Ω)− 1

c

∂B

∂t
−Ω·∇B , (22)

and

∂Umat
∂t

= σ
[ ∫
4π

dΩD(Ω)
]
. (23)

The equations in Fleck’s approximation are
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1

c

∂D(Ω)

∂t
+ Ω·∇D(Ω) =−fσD(Ω)

−(1− f)σ
[
D(Ω)− 1

4π

∫
4π

dΩ′D(Ω′)
]
− 1

c

∂B

∂t
−Ω·∇B , (24)

and

∂Umat
∂t

= fσ
[ ∫
4π

dΩD(Ω)
]
. (25)

3.2 Analyis of some simple examples

At this point we attempt to clarify the essence of the approximation by com-
paring the predictions of the original transport equations with IMC using four
“exercises”.

A/ Thermal equilibrium.

It is seen immediately that both pairs of equations are solved by I(Ω) = B
when both quantities are independent of space and time. Therefore IMC does
have the correct equilibrium limit.

B/ Uniform, time-independent flux.

Suppose that there is a gradient of the radiation density that is constant
in space and time. This is a good approximation of the interior of a thick
absorbing medium, far from initial and boundary layers.

∇·B = (c/4π)∇·(aT 4
mat) = const. (26)

Eq. (22) reduces to

0 = −σD(Ω)−Ω·∇B , (27)

or D(Ω) = −(1/σ)Ω·∇B, as all the other terms are zero. As
∫
4πdΩD(Ω) = 0,

Eq. (23) is also satisfied as 0 = 0.

A similar treatment of Eq. (24) gives

0 = −fσD(Ω)− (1− f)σ
[
D(Ω)− 1

4π

∫
4π

dΩ′D(Ω′)
]
−Ω·∇B . (28)
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This equation is also solved by D(Ω) = −(1/σ)Ω·∇B. In order to see this,
we note that fσ + (1− f)σ = σ and that

∫
4πdΩ Ω·∇B = 0. Eq. (25) is again

satisfied as 0 = 0.

The conclusion is that in a grey absorbing medium the time independent so-
lution of the transport equations is correct in IMC. More generally, in a grey
medium with absorption and isotropic scattering, in steady state, only the
total cross section matters for radiation transport. As the solution is inde-
pendent of the Fleck factor, f , the radiation flux is the same in the correct
transport equation and in IMC. Repeating our previous dictum that the cor-
rectness of any discretization is measured by its closeness to the continuous
transport equation, our conclusion is that the correct transport equations and
IMC should give the same result, (including the same flux) in time indepen-
dent problems.

A similar conclusion was reached recently by Castor [12], Densmore [13] and
by Larsen, Kumar and Morel [15]. By using the difference formulation here
we reach their conclusion more succinctly.

C/ Equilibration between matter and radiation in a uniform grey medium.

We now consider a uniform medium in space and assume that at a given time
the material temperature, Tmat, and the radiation temperature, Trad, are not
equal, but differ by a relatively small amount ∆T . As there are no spatial
gradients anywhere, the fluxes are zero. The two temperatures equilibrate
in time by exchanging energy between the material and the radiation field,
keeping the total energy per unit volume constant.

Umat + Urad = const. (29)

The derivatives are,

dUmat
dt

=
dUmat
dTmat

· dTmat
dt

= ρCv
dTmat
dt

, (30)

and

dUrad
dt

=
dUrad
dTrad

· dTrad
dt

= 4aT 3
rad

dTrad
dt

. (31)

From Eq. (29) we conclude that, for our example

dTmat
dt

= −4aT 3
rad

ρCv

dTrad
dt

= −βrad
dTrad
dt

. (32)
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The notation βrad emphasizes that we used Trad in its definition.

dUrad/dUmat ≈ 4aT 3
rad/ρCv = βrad (33)

From Eq. (19), using the fact that to first order
∫
4πdΩI(Ω) = caT 4

rad and
(always)

∫
4πdΩB(Ω) = caT 4

mat, we get

∂Umat
∂t

= fσca(T 4
rad − T 4

mat) . (34)

We now expand Eqs. (30) and (34) to first order in the temperatures. Denoting
∆T = Trad − Tmat,

dTmat
dt

=
fσc

ρCv
4aT 3

rad∆T = fσcβrad∆T . (35)

From Eq. (32) we get

d∆T

dt
=
dTrad
dt
− dTmat

dt
= −

(
1 +

1

βrad

)
dTmat
dt

. (36)

Finally

d∆T

dt
= −fσc(1 + βrad)∆T . (37)

This equation has the solution

∆T (t) = ∆T (0) exp[−fσc(1 + βrad)t] . (38)

The conclusion is that if f < 1, IMC does not heat the material at the correct
rate. This is the root of all the problems with IMC. Of course, if f = 1 we are
back to the correct equations. As this occurs in continuous radiation transport,
no discretization in space and time can correct it.

D/ Generalization to arbitrary time dependent thick grey media

We will discuss our two equations (18) and (19) in detail in Section 4 below.
We will see that in thick media the radiation field is close to thermal, but
there are problems with the usual derivation of the diffusion equation using
“asymptotic expansion”. According to some papers the diffusion limit of IMC
is independent of the Fleck factor, f . It will be seen that this is not the correct
conclusion. Here we present only one decisive step.
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Let us consider the material heating equation, Eq. (21),

∂Umat
∂t

= fσca(T 4
rad − T 4

mat) .

There are two important conclusion that follow by inspection. If the material
energy (and its temperature) are time dependent, Trad and Tmat cannot be
equal. In time dependent problems, if Trad and Tmat are given, the heating
rate depends on f , therefore it is incorrect if f < 1. Conversely, if the heating
rate is given, Trad and Tmat are incorrect if f < 1. If it is assumed that the
two temperatures are equal, (as in all the literature known to us) this fact is
missed, together with the obvious inconsistency coming from Eq. (21).

4 The “diffusion limit” for grey material with absorption and scat-
tering

We now present an extended analysis of the thick limit for a grey material
with absorption and isotropic scattering. We keep our assumption of LTE, of
no hydrodynamic motion, no external sources and all cross sections indepen-
dent of temperature. We start with the grey “Fleck equations”, Eqs. (18) and
(19). A crucial point is that in time dependent problems there is no consistent
formulation if we assume that the material (in LTE) has the same temper-
ature as the radiation. Therefore we have to assume that the material and
the radiation are at (slightly) different temperatures. In order to make our
derivation simpler, we use slab geometry.

The grey IMC equations, (18), (19) become

1

c

∂I(µ)

∂t
+ µ

∂I(µ)

∂x
+ σI(µ) = σaB + σs

[
1

4π
2π

+1∫
−1

dµI(µ)
]
, (39)

and

∂Umat
∂t

= σa

[
2π

+1∫
−1

dµ [I(µ)−B]
]
. (40)

We used the notation, µ = cos(θ), fσ = σa, (1 − f)σ = σs and, of course,
σa + σs = σ. (We use a purely absorbing example, but our formulation is
equally valid in the presence of isotropic, monochromatic scattering.)
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We now introduce some further notation:

Φmat =
1

c
4πB , (41)

the energy density of a black body radiation field at the material temperature,
and

Φrad =
1

c
2π

+1∫
−1

dµ I(µ) . (42)

The ratio of the specific heats of the radiation field and the material at the
material temperature, βmat, was defined in Eq. (13)

βmat =
4πT 3

mat

ρCv
.

Then ∂Umat/∂t = (1/βmat)∂Φmat/∂t.

Using this notation, the transport equations are

1

c

∂I(µ)

∂t
+ µ

∂I(µ)

∂x
+ σI(µ) = σa

c

4π
Φmat + σs

c

4π
Φrad , (43)

and

1

βmat

∂Φmat

∂t
= σac (Φrad − Φmat) . (44)

Now we repeat the definition of the radiation flux and the conservation of
energy equation.

F = 2π

+1∫
−1

dµµI (45)

∂

∂t

(
1

βmat
Φmat + Φrad

)
= − ∂

∂x
F = − ∂

∂x
2π

+1∫
−1

dµµI(µ) (46)

We decompose I into an isotropic and an anisotropic component.

I = 2π

+1∫
−1

dµ I + A(µ) =
c

4π
Φrad + A (47)
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The transport equation (43) becomes, after using σ = σa + σs ,

1

c

∂A(µ)

∂t
+ µ

∂A(µ)

∂x
+ σA(µ) =

−1

c

c

4π

∂Φrad

∂t
− c

4π
µ
∂Φrad

∂x
+ σa

c

4π
(Φmat − Φrad) . (48)

We now split this equation into an angle-dependent and an angle-independent
component, by integrating it over angles. The isotropic part is

+1∫
−1

dµµ
∂A(µ)

∂x
= − c

4π

∂Φrad

∂t
+

c

4π
σac(Φmat − Φrad) . (49)

The equation of propagation for asymmetric part is obtained by subtracting
(49) from (43)

1

c

∂A(µ)

∂t
+ µ

∂A(µ)

∂x
+ σA(µ) = − c

4π
µ
∂Φrad

∂x
+

+1∫
−1

dµµ
∂A(µ)

∂x
. (50)

To these two equations we have to add the one for heating the material (44),
the definition of the flux (45), and the equation for energy conservation (46).

In order to make things clear, we display the full set of equations (and apologize
for the new equation numbers).

σac(Φmat − Φrad) = 2π

+1∫
−1

dµµ
∂A(µ)

∂x
+
∂Φrad

∂t
(51)

1

c

∂A(µ)

∂t
+ µ

∂A(µ)

∂x
+ σA(µ) = − c

4π
µ
∂Φrad

∂x
+

+1∫
−1

dµµ
∂A(µ)

∂x
(52)

1

βmat

∂Φmat

∂t
= σac(Φrad − Φmat) (53)

F = 2π

+1∫
−1

dµµI = 2π

+1∫
−1

dµµA(µ) (54)
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∂

∂t

(
1

βmat
Φmat + Φrad

)
= −∂F

∂x
= − ∂

∂x
2π

+1∫
−1

dµµA(µ) (55)

Combining (51) and (53) we see that the energy conservation equation, (55),
is automatically satisfied.

4.1 Purely scattering medium

The limit of f → 0 is a monochromatic, isotropically scattering medium. In
this limit σa = 0, σ = σs. We substitute this into Eqs. (51) - (55). The result
is

0 = 2π

+1∫
−1

dµµ
∂A(µ)

∂x
+
∂Φrad

∂t
. (56)

Eq. (52) is unchanged:

1

c

∂A(µ)

∂t
+ µ

∂A(µ)

∂x
+ σA(µ) = − c

4π
µ
∂Φrad

∂x
+

+1∫
−1

dµµ
∂A(µ)

∂x
. (57)

1

βmat

∂Φmat

∂t
= 0 (58)

Eq. (54) is also unchanged:

F = 2π

+1∫
−1

dµµI = 2π

+1∫
−1

dµµA(µ) . (59)

∂

∂t
Φrad = −∂F

∂x
= − ∂

∂x
2π

+1∫
−1

dµµA(µ) (60)

The two equations (57) and (60) are identical, so we can use either one of
them.
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The definition of a thick medium is (1/σ)(∂/∂x) � 1. Therefore, in the first
approximation Eq. (57) reduces to

σA(µ) = − c

4π
µ
∂Φrad

∂x
. (61)

Its solution can be substituted into Eq. (59), giving

F = 2π

+1∫
−1

dµµA(µ) = − 1

σ

c

4π

∂Φrad

∂x
2π

+1∫
−1

dµµ2 = − c

3σ

∂Φrad

∂x
. (62)

Finally, from (60) we get the “Eddington” diffusion equation

∂

∂t
Φrad = − c

3σ

∂2Φrad

∂x2
. (63)

We presented this long derivation in order to emphasize that the diffusion
equation is valid for a purely scattering medium, that is also the limit of
f → 0. In this limit the material is totally decoupled from the radiation. In
mathematical terms, the two coupled differential equations for the energy of
the material and the energy of the radiation reduce to a single equation for
the radiation.

Two more remarks are in order:

First, as the limit is approached and f � 1 it is clear that equilibration of the
material and the radiation gets more and more sluggish. In fact in the limit
of f = 0 the radiation merrily diffuses through the material without loss of
energy.

Second, the asymptotic expansion, presented below, was originally presented
for neutron diffusion. See e.g. [17], [18]. There the material density is almost
always largely unaffected by the dynamics of the neutron density. Therefore
the diffusion equation derived by asymptotic expansion is valid.

4.2 Asymptotic expansion for a thick grey material with absorption and scat-
tering

Next we show the shortcomings of the asymptotic expansion as it was derived
in all the literature we are aware of. It should be emphasized that our own
paper is not an exception [8].
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In optically thick media, in LTE, the photon mean free path 1/σ is small
with respect to the inverse characteristic length |(1/Φ)(∂Φ/∂x)| ≡ |(∂/∂x))|
of the change in material properties. We define the small parameter, ε =
(1/σ)(∂/∂x).

We now present our derivation. It is not simple, but we beseech the reader
to be patient. We start with the grey “Fleck equations”, Eqs. (24), (25). We
expand them in power series of ε and solve them order by order. A crucial point
is that there is no consistent expansion to second order, if we assume that the
material (in LTE) has the same temperature as the radiation. Therefore we
have to assume that the material and the radiation are at (slightly) different
temperatures. In order to make our derivation more accessible, we will use the
standard transport equations (not the difference formulation). Also, in order
to simplify notation we assume slab geometry.

The grey IMC equations, (24), (25) become

1

c

∂I(µ)

∂t
+ µ

∂I(µ)

∂x
+ σI(µ) = σaB + σs

[
1

4π
2π

+1∫
−1

dµI(µ)
]
, (64)

and

∂Umat
∂t

= σa

[
2π

+1∫
−1

dµ [I(µ)−B]
]
. (65)

We used the notation, µ = cosθ, fσ = σa, (1 − f)σ = σs and, of course,
σa + σs = σ. Other than that, we use our notation from Eqs. (41), (42).

The transport equations are

1

c

∂I(µ)

∂t
+ µ

∂I(µ)

∂x
+ σI(µ) = σa

c

4π
Φmat + σs

c

4π
Φrad , (66)

and

1

βmat

∂Φmat

∂t
= σac(Φrad − Φmat) . (67)

For completeness, we display the definition of the radiation flux, and the con-
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servation of energy equation.

F = 2π

+1∫
−1

dµµI (68)

∂

∂t

(
1

βmat
Φmat + Φrad

)
= − ∂

∂x
F = − ∂

∂x
2π

+1∫
−1

dµµI(µ) (69)

Next, we expand the variables in power series in ε

Φrad = Φ
(0)
rad + εΦ

(1)
rad + ε2Φ

(2)
rad + . . . (70)

and use a similar expansion for the other variables: I, Φmat, F .

The equations themselves are also multiplied by the proper powers of ε.

ε2
∂

∂t

(
1

βmat
Φmat + Φrad

)
= −ε ∂

∂x
2π

+1∫
−1

dµµI(µ) [A] (71)

ε2
1

c

∂I(µ)

∂t
+ εµ

∂I(µ)

∂x
+ σI(µ) = σa

c

4π
Φmat + σs

c

4π
Φrad [B] (72)

ε2
1

βmat

∂Φmat

∂t
= σac(Φrad − Φmat) [C] (73)

F = 2π

+1∫
−1

dµµI [D] (74)

The definitions of Φrad and the other variables are now substituted into the
equations and we demand that the equations be satisfied order by order in ε.
We now list the results: for easier reference we label them [A] to [D] and by
the order of ε, [A0], [A1], etc.

Order ε0.

σI(µ)(0) = σa
c

4π
Φ

(0)
mat + σs

c

4π
Φ

(0)
rad [B0] (75)

0 = σac(Φ
(0)
rad − Φ

(0)
mat) [C0] (76)
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F (0) = 2π

+1∫
−1

dµµI(0) [D0] (77)

The solution is

Φ
(0)
rad = Φ

(0)
mat , (78)

I(µ)(0) =
c

4π
Φ

(0)
mat =

c

4π
Φ

(0)
rad , (79)

F (0) = 0 . (80)

Order ε.

0 =
∂

∂x
2π

+1∫
−1

dµµI(µ)(0) =
∂

∂x
F (0) [A1] (81)

µ
∂I(µ)(0)

∂x
+ σI(µ)(1) = σa

c

4π
Φ

(1)
mat + σs

c

4π
Φ

(1)
rad [B1] (82)

0 = σac(Φ
(1)
rad − Φ

(1)
mat) [C1] (83)

F (1) = 2π

+1∫
−1

dµµI(1) [D1] (84)

[A1] is identically satisfied. From [C1] it follows that

Φ
(1)
rad = Φ

(1)
mat . (85)

Then [B1] can be solved. The result is

I(µ)(1) = − 1

σ
µ
∂I(µ)(0)

∂x
+

c

4π
Φ

(1)
rad = − 1

σ
µ
∂

∂x

c

4π
Φ

(0)
rad +

c

4π
Φ

(1)
rad . (86)

From [D1], as Φ
(1)
rad gives no flux,

F (1) = 2π

+1∫
−1

dµµ
(
− 1

σ
µ
∂I(µ)(0)

∂x
+

c

4π
Φ

(1)
rad

)
= − c

3σ

∂

∂x
Φ

(0)
rad . (87)
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To this order the material does not heat or cool. In fact it is implicitly assumed
that (∂2/∂x2)Φ

(0)
rad = 0

Order ε2.

∂

∂t

(
1

βmat
Φ

(0)
mat + Φ

(0)
rad

)
= − ∂

∂x
2π

+1∫
−1

dµµI(µ)(1) [A2] (88)

1

c

∂I(µ)(0)

∂t
+ µ

∂I(µ)(1)

∂x
+ σI(µ)(2) = σa

c

4π
Φ

(2)
mat + σs

c

4π
Φ

(2)
rad [B2] (89)

1

βmat

∂Φ
(0)
mat

∂t
= σac(Φ

(2)
rad − Φ

(2)
mat) [C2] (90)

F (2) = 2π

+1∫
−1

dµµI(2) [D2] (91)

This is the lowest order order in ε that the material can heat or cool; and if
it does, the material and radiation temperatures are necessarily different. We
will see that this difference can be eliminated from the solution of [B-2]. This
is done in all the published literature we are aware of.

We now proceed to partially solve these equations. From [B2], using (86) we
get

σI(µ)(2) = −1

c

∂I(µ)(0)

∂t
− µ ∂

∂x

(
− 1

σ
µ
∂I(µ)(0)

∂x
+

c

4π
Φ

(1)
rad

)
+σa

c

4π
Φ

(2)
mat + σs

c

4π
Φ

(2)
rad =

−1

c

∂

∂t

c

4π
Φ

(0)
rad − µ

∂

∂x

(
− 1

σ
µ
∂

∂x

c

4π
Φ

(0)
rad +

c

4π
Φ

(1)
rad

)
+σa

c

4π
Φ

(2)
mat + σs

c

4π
Φ

(2)
rad . (92)

We now integrate this equation over the solid angle and use the identity that,
for any order in ε

2π

+1∫
−1

dµ I(µ) = cΦrad . (93)

The result, using 2π
∫+1
−1dµµ

2n = 4π/(2n+ 1), and 2π
∫+1
−1dµµ

(2n+1) = 0, is
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σcΦ
(2)
rad = −∂Φ

(0)
rad

∂t
+

c

3σ

∂2Φ
(0)
rad

∂x2
+ σacΦ

(2)
mat + σscΦ

(2)
rad . (94)

Using σ = σa + σs, then [C2]

∂Φ
(0)
rad

∂t
− c

3σ

∂2Φ
(0)
rad

∂x2
= σac(Φ

(2)
mat − Φ

(2)
rad) = − 1

βmat

∂Φ
(0)
mat

∂t
. (95)

Rearrangement gets the diffusion equation,

∂

∂t

(
1

βmat
Φ

(0)
mat + Φ

(0)
rad

)
=

c

3σ

∂2Φ
(0)
rad

∂x2
. (96)

Note again that the diffusion equation depends only on the sum of the ab-
sorption and isotropic scattering.

From [D2], using the explicit solution of (92) we get (after leaving out some
intermediate steps)

F (2) = − c

3σ

∂

∂x
Φ

(1)
rad . (97)

Order ε3.

∂

∂t

(
1

βmat
Φ

(1)
mat + Φ

(1)
rad

)
= − ∂

∂x
2π

+1∫
−1

dµµI(µ)(2) [A3] (98)

1

c

∂I(µ)(1)

∂t
+ µ

∂I(µ)(2)

∂x
+ σI(µ)(3) = σa

c

4π
Φ

(3)
mat + σs

c

4π
Φ

(3)
rad [B3] (99)

1

βmat

∂Φ
(1)
mat

∂t
= σac(Φ

(3)
rad − Φ

(3)
mat) [C3] (100)

F (3) = 2π

+1∫
−1

dµµI(3) [D3] (101)

We proceed to solve [B3], using (86) and (92)

21



σI(µ)(3) = −1

c

∂

∂t

(
− 1

σ
µ
∂

∂x

c

4π
Φ

(0)
rad +

c

4π
Φ

(1)
rad

)
−µ ∂

∂x

1

σ

[
− 1

c

∂

∂t

c

4π
Φ

(0)
rad − µ

∂

∂x

(
− 1

σ
µ
∂

∂x

c

4π
Φ

(0)
rad +

c

4π
Φ

(1)
rad

)
+σa

c

4π
Φ

(2)
mat + σs

c

4π
Φ

(2)
rad

]
+ σa

c

4π
Φ

(3)
mat + σs

c

4π
Φ

(3)
rad . (102)

It simplifies to

σI(µ)(3) = −1

c

∂

∂t

c

4π
Φ

(1)
rad

−µ ∂

∂x

1

σ

[
− µ ∂

∂x

(
− 1

σ
µ
∂

∂x

c

4π
Φ

(0)
rad +

c

4π
Φ

(1)
rad

)
+σa

c

4π
Φ

(2)
mat + σs

c

4π
Φ

(2)
rad

]
+ σa

c

4π
Φ

(3)
mat + σs

c

4π
Φ

(3)
rad . (103)

We now integrate this equation over the solid angle. The result is

σcΦ
(3)
rad = −∂Φ

(1)
rad

∂t
+

c

3σ

∂2Φ
(1)
rad

∂x2
+ σacΦ

(3)
mat + σscΦ

(3)
rad . (104)

Using σ = σa + σs, then [C3]

∂Φ
(1)
rad

∂t
− c

3σ

∂2Φ
(1)
rad

∂x2
= σac(Φ

(3)
mat − Φ

(3)
rad) = − 1

βmat

∂Φ
(1)
mat

∂t
. (105)

Rearrangement gets again the diffusion equation,

∂

∂t

(
1

βmat
Φ

(1)
mat + Φ

(1)
rad

)
=

c

3σ

∂2Φ
(1)
rad

∂x2
. (106)

We get the result that an absorbing and scattering medium satisfies the diffu-
sion equation not only to lowest order, but to one higher order; as in a purely
absorbing medium investigated by Larsen, Mercer and Morel [14], [15], [16].
Unfortunately they stop here and miss the difference between the material
and the radiation temperatures that appear in time-dependent problems.

The flux is, from [D3] and (103)

F (3) = 2π

+1∫
−1

dµµI(3) = − c

5σ3

∂3

∂x3
Φ

(0)
rad −

c

3σ

σa
σ

∂Φ
(2)
mat

∂x
− c

3σ

σs
σ

∂Φ
(2)
rad

∂x
.(107)
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Note that Φ
(1)
rad = Φ

(1)
mat is still not defined, but one can do so.

4.3 Iterative solution

We now “solve” the first four equations for optically thick media by iteration,
as in Castor’s book [3]. He points out that this method was used originally by
Schwarzschild [19] and reviewed by Cox and Giuli [20].

Let us remember that (1/σ)(∂/∂x) ≈ ε � 1. Also, if the temporal variations
are not very large, (1/σac)(∂/∂t) � 1. In all papers, that use asymptotic
expansion (including our own), it was assumed that (1/σac)(∂/∂t) ≈ ε2. We
will not need this assumption.

From (52) we get

A(µ) =
1

σ

[
− 1

c

∂A(µ)

∂t
− µ∂A(µ)

∂x
− c

4π
µ
∂Φrad

∂x
+

+1∫
−1

dµµ
∂A(µ)

∂x

]
. (108)

Similarly, from (51) and (53) we get

Φmat − Φrad =
1

σac

[
2π

+1∫
−1

dµµ
∂A(µ)

∂x
+
∂Φrad

∂t

]
, (109)

Φrad − Φmat =
1

σac

[
1

βmat

∂Φmat

∂t

]
. (110)

Now two important remarks and a conjecture. First, we have made no approx-
imations yet, but the orders of magnitude of the terms are getting apparent.
Second, as it was pointed out in this paper ad nauseam, if the material and/or
the radiation temperatures are time dependent, there has to be a difference
between Φrad and Φmat. Also, it is clear that the presence of σa in these equa-
tions is the source of the difference between IMC and the correct transport
equation. The latter corresponds to f = 1 or σa = σ. Third, if we eliminate
the temperature difference, as well as σa from the equations, we get

2π

+1∫
−1

dµµ
∂A(µ)

∂x
+
∂Φrad

∂t
= − 1

βmat

∂Φmat

∂t
. (111)
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We strongly suspect that this elimination led all previous authors to overlook
this important point and led some of them to the erroneous conclusion that
IMC does give the correct answers even in time dependent problems and even
in the continuum limit.

The first approximation in ε is

A(µ)(1) = − c

4π
µ

1

σ

∂Φ
(1)
rad

∂x
, (112)

Φ
(1)
rad − Φ

(1)
mat =

1

σac

[
1

βmat

∂Φ
(1)
mat

∂t

]
= − 1

σac

[
∂Φ

(1)
rad

∂t

]
, (113)

F (1) = 2π

+1∫
−1

dµµA(µ)(1) = −2π

+1∫
−1

dµµ
c

4π
µ

1

σ

∂Φ
(1)
rad

∂x
= − c

3σ

∂Φ
(1)
rad

∂x
. (114)

Substituting this into (55) we get

∂

∂t

(
1

βmat
Φ

(1)
mat + Φ

(1)
rad

)
= −∂F

(1)

∂x
=

∂

∂x

c

3σ

∂Φ
(1)
rad

∂x
. (115)

This is the diffusion equation. It is a result good to first order in ε. Note that
only the total cross section, σ appears in this equation. It is easy to conclude
from this equation that IMC results in the correct diffusion of radiation. This
is where the literature usually stops. In reality this equation has to be solved
together with Eq. (113) and there the result of IMC is different from the correct
one. In other words, whenever the radiation temperature is time dependent,
Φmat 6= Φrad and the temperature difference depends on the Fleck factor, f .

In order to illuminate this point a little more, we eliminate Φmat from the
diffusion equation using Eq. (113); and emphasize that the result is good only
to first order.

1

βmat

∂Φ
(1)
rad

∂t
+
∂Φ

(1)
rad

∂t
=

c

3σ

∂2Φ
(1)
rad

∂x2
− 1

σac

1

βmat

∂2Φ
(1)
rad

∂t2
(116)

We see that there is a correction to the diffusion equation, with σa appearing
instead of σ in the second term on the right hand side. If we use the usual
“asymptotic” expansion in powers of ε we miss this difference. As σa = fσ,
the influence of the incorrect second term becomes large as f becomes small.
This is typical of IMC in optically thick media.
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Similarly, we can eliminate Φrad from the diffusion equation using Eq. (113).
The result is

1

βmat

∂Φ
(1)
mat

∂t
+
∂Φ

(1)
mat

∂t
=

c

3σ

∂2Φ
(1)
mat

∂x2
− 1

σac

1

βmat

∂2Φ
(1)
mat

∂t2

+
1

σac

1

βmat

c

3σ

∂3Φ
(1)
mat

∂x2∂t
. (117)

It is also instructive to calculate the flux in terms of Φmat

F (1) = − c

3σ

∂Φ
(1)
mat

∂x
− c

3σ

1

σac

1

βmat

∂2Φ
(1)
mat

∂t∂x
. (118)

We see that when f < 1 there is an enhanced flux if Φmat increases in time.
That is the reason that radiation penetrates a cold medium too fast in IMC.

The second order approximation is obtained by using the first approxima-
tion on the right hand side of Eqs. (108), (109) and (110) The calculation is
straightforward, but it involves some algebra. We quote here the results.

A(µ)(2) = − c

4π

[
µ

1

σ

∂Φrad

∂x
− µ 1

σ2c

∂2Φ
(2)
rad

∂t∂x
−
(
µ2 − 2

3

)
1

σ2

∂2Φ
(2)
rad

∂x2

]
(119)

Φ
(2)
rad − Φ

(2)
mat = − 1

σac

[
∂Φ

(2)
rad

∂t
− c

3σ

∂2Φ
(2)
rad

∂x2

]
(120)

F (2) = 2π

+1∫
−1

dµµA(µ)(2) = − c

3σ

[
∂Φ

(2)
rad

∂x
− 1

σc

∂2Φ
(2)
rad

∂t∂x

]
(121)

We remark that these results stand alone; they do not have to be added to the
first approximation as in asymptotic expansion. Energy conservation yields
the modified diffusion equation

∂

∂t

(
1

βmat
Φ

(2)
mat + Φ

(2)
rad

)
= −∂F

(2)

∂x
=

∂

∂x

c

3σ

[
∂Φ

(2)
rad

∂x
− 1

σc

∂2Φ
(2)
rad

∂t∂x

]
. (122)

We can again use Eq. (120) to eliminate Φ
(2)
mat. The result is
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1

βmat

∂Φ
(2)
rad

∂t
+
∂Φ

(2)
rad

∂t
=

c

3σ

∂2Φ
(2)
rad

∂x2
− 1

σac

1

βmat

∂2Φ
(2)
rad

∂t2
− c

3σ

(
1

σc
− 1

βmatσac

)
∂3Φ

(2)
rad

∂t∂x2
. (123)

This is a very complicated equation. We could write an equation for Φmat, but
it is even more complicated.

5 Summary and conclusions

This paper analyzes the limits of Fleck’s IMC radiation transport in simple
cases, without the approximations that are introduced by discretization in
space and time. In some sense, therefore, the paper is not practical. Never-
theless, the only valid comparison for practical results is their closeness to the
solution of the continuous differential equation. Therefore if an approximate
method does not get the correct continuum equations in some cases; it is sure
that any discretization of that method will get the wrong answer.

There are some cases that IMC does get the correct limit. The most important
ones are: a complete thermal equilibrium and a steady state, that is non-
uniform in space.

It is well known that IMC weakens the coupling between material and ra-
diation, by the Fleck factor f . Therefore it is interesting to investigate the
validity of the approximation in time dependent problems. It is pointed out
that even in optically thick media, far from boundaries, the “effective” tem-
perature of the radiation and the material temperature are always different.
That difference is wrong in IMC. Using this “insight”, the paper shows that
even in grey media IMC does not satisfy the correct diffusion equation, except
in a purely scattering medium, when f → 0. In that case the “Eddington”
diffusion equation is obtained.

Then, using asymptotic expansion, we derive the differential equation that
is satisfied by IMC in thick stationary media. It is “not quite” the correct
diffusion equation.

The result that IMC does not give the correct diffusion equation is shown in
two different ways, because all the literature (that we know of) got it wrong.

Fortunately, there are methods that are shown to give the correct results and
that are actually faster than IMC in practical cases [10] .
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